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A GRID-FREE METHOD FOR HIGH REYNOLDS NUMBER
FLOW AROUND AN IMMERSED ELASTIC STRUCTURE

INTRODUCTION

This report is concerned with the computational modeling of problems in biological fluid
mechanics. Typically, these problems involve the study of flow about highly flexible, moving
boundaries; for instance, distensible vessels, moving heart walls, and valves. The fluid along
with the boundary constitutes a coupled mechanical system in the sense that the motion of
the boundary is determined by that of the fluid, but at the same time the boundary exerts
force on the fluid and alters its motion. With the advent of supercomputers, many of these
problems which were previously intractable, can now be successfully analyzed.

An innovative computational approach, the immersed boundary technique, was introduced
by Peskin [181 to model 2-dimensional blood flow in the left heart. Recently, this technique
has been advanced to study other biofluiddynamic problems such as platelet aggregation
[11], aquatic animal locomotion [8][101, peristaltic pumping of solid particles [9], fluid flow in
the inner ear [41, and 3-dimensional blood flow in the heart [19][20]. This numerical method
solves the full incompressible Navier-Stokes equations in a domain of fluid within which
a massless, neutrally buoyant elastic boundary undergoing time dependent movements is
immersed.

The Navier-Stokes equations have been solved using Chorin's finite difference scheme [6].
Theoretically, this scheme ;mposes no restriction on the Reynolds number of the flow to be
modelled. (The Reynolds number is a nondimensional quantity which measures the ratio of
inertial forces to viscous forces.) However, the higher the Reynolds number, the smaller the
grid spacing and time step must be to ensure stability of the calculations. To model high
Reynolds number flow (as in the heart), the amounts of computer time and memory needed
become prohibitive and impractical.

Within the finite difference framework, we have adapted the second order projection
method recently introduced by Bell, Colella, and Glaz [3] for the solution to the Navier-
Stokes equations. Our results indicate that flows with higher Reynolds numbers can be
modelled more stably with this code than with Chorin's scheme using the same number of
grid points and the same time step. We have tested this scheme on a problem of flow past a
tethered cylinder and the results have exhibited the expected phenomena of flow separation
and vortex shedding. The cylinder is modelled as an immersed boundary. Samn [22] has
tested the projection method on problems with a non-zero force density, as is the case of



immersed boundary calculations, in a class of problems where exact solutions are known.
For moderately high Reynolds numbers, this projection method is quite promising.

For much higher Reynolds numbers, a grid-free vortex method combined with the im-
mersed boundary technique may be more appropriate. An effort in this direction was made
by McCracken and Peskin [17] in 1980. This effort was a hybrid method which represented
vorticity both on a grid and as free-moving vortex elements. In light of the advances made in
vortex methods and the incredible growth of computing power since then, a totally grid-free
vortex method for 2-dimensional flow is now being implemented and tested. This report will
describe the current status of this algorithm.

IMMERSED BOUNDARY TECHNIQUE

The flow of a. viscous, incompressible fluid is governed by the incompressible Navier Stokes
equations:

[at +u.Vu Vp +Au + F(xt) (1)

V'u = 0

Here p = density, p = viscosity, u = (u,v) = velocity, p = pressure, and F(x,t) is the
external force per unit volume applied to the fluid. This external force field represents the
force of the elastic boundary on the fluid. It is a delta-function layer of force which is zero
away from the immersed boundary X(s,t). This representation will be the basis of the
computational model.

Since the immersed boundary is taken to be elastic and massless, the density per unit
length of the boundary force f(s,t) at a material point is determined by the boundary
configuration at time t. This elastic force is transmitted directly to the fluid because the
boundary is massless. This follows from Newton's second law for force balance at a boundary
point: the force of the fluid on the boundary point and the elastic force on the boundary
point must add up to zero. Therefore, the force of the boundary point on the fluid is equal
to the elastic force on that point. The external force field is then:

F(xt) f f(s,t)6(x- X(s, t))ds (2)

Here the integration is over the immersed boundary, and 6 is the 2-dimensional delta-
function.
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Since the fluid is viscous, the velocity field is continuous across the boundary. This
implies that the velocity of a material point of the immersed boundary must be equal to the
velocity of the fluid at that point:

OX(s, t) = u(X(s, t), t) f u(x, t)8(x - X(s, t))dx (3)

at

Here the integration is over the entire fluid domain. This integral representation is not
singular since the 2-dimensional delta function is integrated over both space dimensions.

The crucial feature of this model is that the immersed boundary is not our computational
boundary in the Navier-Stokes solver (whether we are using finite differences or vortex meth-
ods). The boundary'is a singular force field which alters the driving force in the fluid dynamic
equations.

Algorithm

Given the fluid velocity field u" and the configuration of the elastic boundaries X" at
time step n:

1) Calculate the force density f" from the configuration X".

2) Use fV to determine the external force on the fluid: F'.

3) Solve the Navier-Stokes equations for Uf+l.

4) Move the elastic boundary at the local fluid velocity to get X +1 .

Within the finite difference framework, step (3) has been solved using Chorin's finite
difference method. Steps (2) and (4) involve the use of discrete delta functions which com-
municate information between the grid and the immersed boundary points (which do not
coincide with grid points). We refer the reader to reference [18] for details.

Derivation of Force Density

We will first model a stationary immersed boundary to illustrate our choice of force den-
sity. Consider a boundary made up of a continuum of material points X(s, t) = (0(s, t), y(, t))
which is in equilibrium when its material points coincide with the tether points X*(s) =
(x(s),y'(s)). We imagine there is a spring connecting X(s,t) to X'(s) and that it has
resting length zero.

The elastic force acting on a point X(a, t) is then:

3



f(s,t)ds -S[X(s,t) - X'(s)]d (4)

S is the stiffness constant of the spring, and it may be thought of in 2 ways:

1) A physical parameter which reflects material properties of the elastic boundary.

2) A numerical parameter which should be made as large as possible to strictly enforce
the equilibrium position of the elastic boundary.

This representation of the force density assumes that we know a priori the equilibrium

position of the boundary in fixed space. This representation will be useful in our test
examples where our immersed boundary will be either a fixed cylinder or a fixed flat plate.
However, in most applications, the motion which we choose to specify is the time-dependent
configuration of the boundary with respect to itself. The actual displacement relative to
spatial coordinates is not preset, but is determined by the equations of motion. For instance,
we can choose forces at a boundary point due to the rest of the boundary as:

1) Spring-like forces which asks that the 'links' between successive points resist compres-
sion or expansion from a given arc length.

2) Bending-resistant forces which asks that the angle formed by neighboring links be a
given function which changes with position and time.

We refer the reader to references [10J[18[ for more details on how different boundary
configurations can be enforced by the proper choice of force density funt-tions.

VORTEX METHOD

In this section, we will outline Chorin's vortex method [7], a grid-free scheme which
represents the fluid field by a discrete collection of vortex elements.

Inviscid, incompressible flow in 2 dimensions in the absence of external forces is governed
by the Euler equations:

Dii VP (5)
Dt

V.u 0 (6)

The first term in equation (5) is the total derivative. We introduce the vorticity w -
V , u • (0, 0, 1) v, u, . Taking curl of equation (5) gives:



Dw (7)
Dt

The vorticity acts as 'particles' which move with the fluid. It is, therefore, natural to

model vorticity by a discrete collection of vortex elements around which the vorticity of the

fluid is concentrated. The velocity can be recovered from the configuration and strengths of

the vortex elements using a discrete form of the Biot-Savart law.

Since this flow is inviscid, there is no mechanism for creation or destruction of vorticity

(Kelvin's circulation theorem). The vorticity is represented by a sum of m point vortices,

the i th one centered at point x, with strength r.,:

Yn m

) = ", 6(x - x,) (8)

Here 6 is the Dirac delta function.

The incompressibility condition implies the existence of a stream function (x,y) such
that:

U (9)
4.r - -v (10)

The relation between the stream function and the vorticity is therefore:

All, = -W (11)

Using the representation (8) of vorticity, equation (11) can be solved explicitly (in the whole
plane) by the formula:

4,(xj xi loglx - x,I (12)
2r1

The velocity can be calculated directly from the stream function:

", ((Y - Y)(I- X,))(3

r I

5



This formula, unfortunately, is infinite at each of the vortex centers x, . This problem is
overcome by the convention that the induced self velocity of a point vortex, in the absence of
boundaries, is zero. The convection equation for vorticity (7) is solved by moving the point
vortices at the local fluid velocity:

dx tKj (-(y, - y), (X,- X)) (14)

A 27 Ix - x,

Notice that this Lagrangian description of the vorticity field overcomes the difficulty of
the nonlinearity in the convection equation.

Thus far we've been considering an unbounded domain. In a region of fluid with sta-
tionary boundary (9Q, the boundary condition which must be satisfied in this inviscid flow
is:

u n = 0 on aQ (15)

where n is the normal to the boundary. (If the boundary is moving at velocity V, the
condition becomes u . n = V . n .) This condition can be satisfied by adding a potential flow
to the velocity in (13):

U = U+ VO (16)

Taking divergence of this expression, we get:

AO: 0 (17)

-ne -u,..n (18)

A Neumann problem must be solved for €. Depending upon the geometry of the problem,
this can be done through the use of conformal mapping where proper image vortices are
introduced [121121].

The vortex method for incompressible, viscous flow is based on these ideas. The major
difference between the Navier-Stokes equations and the Euler equations, besides the diffusion
term, is the role of boundaries. The condition at a stationary boundary is now the no-slip
condition:

u=O on aQ (19)
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Not only is the normal velocity zero, but also the tangential velocity. Also, unlike inviscid

flow, vorticity can be created.

Consider flow past an infinite flat plate with uniform velocity (U, 0) at infinity. The

solution of the inviscid equations is u = (U, 0) everywhere. However, in the viscous case,
there must be zero velocity at the plate.

The transition region from the boundary to the uniform flow at infinity (the boundary
layer) has thickness on the order of l/v/R, where R = Reynolds number. Within this

boundary layer, vorticity is created. For large Reynolds numbers, the boundary layer is quite
small. Here, again, the inadequacy of finite difference schemes for large Reynolds number
flow becomes evident. To resolve what is going on in the boundary layer, a minimum number
of mesh points is needed within that region. This resolution leads to a prohibitively small

mesh width and time step.

Vortex Method for Viscous Flow

The Navier-Stokes equations for 2-dimensional flow in stream function - vorticity formu-
lation are

Dw. 1
__ AW (20)
Dt R
AO = -W (21)

U V )4, (22)

V - (23)

As before, the vorticity field is represented by a discrete collection of vortex elements.
These vortex elements will be moved both by convection and diffusion. In practice, it is
necessary to spread the point vortices into 'vortex blobs'[12] because the velocity given by
equation (13) becomes infinite as the vortex centers are approached. There are many choices
for desingularizing this kernel which have been analyzed and implemented [2] [7]. We used
the approximation suggested by Krasny '15]. Using a discretized version of the Biot-Savart
law, the velocity field in an unbounded fluid induced by these modified point vortices is:

u , (-y - y, ), (X - X,) (24)

,, 27r Ix - x,12 + 0-2

where (T is smoothing parameter.

The no-slip boundary condition on 012 is split up into 2 parts:

7



u.n - 0 (25)

1 7 2 0 (26)

Here n is the normal vector and 7 is the tangent vector to 0Q . The first condition is satisfied

by the introduction of a potential flow, as in equation (16). By definition, u r should be
zero at the boundary (since ii = 0 on the boundary). However, u - r will not, in general,be
zero at the boundary. This fact implies the existence of a delta-function layer of vorticity
at the boundary. The circulation per unit length of this vortex layer is -u T 7. The second
condition is, therefore, satisfied by the creation of vortex elements at the boundary with
these strengths. (The boundary is partitioned into pieces of length As, and a modified point
vortex of strength - 2[11 . 'rAs is placed at its center. The factor of 2 accounts for elements
which will immediately fall outside the boundary during a random walk, as explained later.)
This numerical creation of vorticity at the boundary mimics what physically occurs.

The vortex algorithm for solution of the Navier-Stokes equations is as follows. Given the
centers x, and strengths K, of the vortex elements at time step n :

1. Satisfy the tangential boundary condition by creating new vortex elements at the
boundary.

2. Move all of the vortex elements:

-- X, +A t(u - V ) + , (27)

Here the 7, are independent Gaussian random variables with mean zero and variance 2At/R.
This random walk accounts for the diffusion term in the vorticity convection equation.

This algorithm is a fractional step algorithm which first solves the convection step, and
then the diffusion. For discussion of convergence the reader is referred to Goodman 11].

GRID-FREE METHOD WITH IMMERSED BOUNDARY

The vortex method described earlier is grid-free, and thus the small mesh width restriction
of finite difference schemes for large Reynolds numbers is circumvented. We have developed
a vortex method to solve the coupled system of a viscous fluid and an immersed elastic
boundary. Our treatment of the elastic boundary as a vorticity source is based on McCracken
and Peskin [171.

The fluid only feels the presence of the immersed boundary as a singular distribution of
external forces:

8 
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F(x,t) f f(s,t)6(x - X(s,t))ds (28)

Here the integration is over the immersed boundary, and 5 is the 2-dimensional delta fun,:-
tion. We need to examine how this contributes to the evolution of the vorticity. Following
McCracken and Peskir. [17], we see that the curl of the external force acts as a source of
vorticity:

Dw 1
Dt - Aw + (V xF).k (29)

Here k = (0,0,1). We have:

(V x F) -k = fVx ((x - X(st)) f] k ds (30)

= f8V6(x - X(s,t)).(f 2,-fl) ds (31)

where f = (fl, f2). The above integrand can be interpreted as a directional derivative. We
discretize this integral as follows:

6(x +  -X(s,t)) - 6(x- - X(s t)) fJAsz 5x / -fE (32)
2h

where

x = x + h(/ /) (33)

x- = x - h (h 2,-f) (34)
Ifi

Here h is a small parameter.

Therefore, the immersed boundary acts a source of vortex dipoles with dipole moment:

(fh,-f,1) /AS At (35)

We multiply by At to get the amount of vorticity to be generated over one time step.

This dipole moment is not, in general, normal to the immersed boundary. McCracken
and Peskin [17] split up the force density f into its tangential and normal components:

f = fr + f,,i/ (36)

where r is the unit tangent to the immersed boundary curve, and 71 is the unit normal. It
can be shown for a closed boundary, using integration by parts, that the normal component
contributes a monopole layer of vorticity along the boundary with strength density:

[ 1-4- 1 (37)

ds IX'(s)I

-9



If tae immersed boundary curve is not closed, 2 additional vortex elements need to be
introduced at the ends of the boundary due to the boundary terms in the integration by
parts.

The tangential component of force still contributes a dipole layer as just described, but
now this layer is oriented normal to the boundary. The process of splitting up the creation
of vortex elements into a monopole layer and dipole layer oriented normal tc the boundary
adds more numerical stability to the calculations.

We now outline our basic vortex method in the plane within which there is an immersed
boundary. The state of the system at time t = nAt is given by the configuration X"
of material points of the immersed boundary, and the discrete collection of modified point
vortices centered at xn with strengths r;5 . The basic algorithm is:

(1) Compute force density f ' using the current boundary configuration.

(2) Use step (1) to create new vortex elements at the boundary.

(3) Move each of the vortex elements in the velocity field induced by the other vortex
elements plus a random walk to simulate diffusion.

(4) Compute the velocity at each of the points of the immersed boundary using equation
(24). Move each of these points at this local fluid velocity.

This algorithm has the advantage of being grid free, and since it has no real boundaries,
we needn't worry about the introduction of image vortices to satisfy the normal boundary
condition discussed in the previous section.

Explicit evaluation of the fort-e density at the current boundary configuration produces
large instabilities. The reason for this condition is that the badndary is stiff and the forces
are large enough to make the boundary overshoot equilibri,'m in one time step. We use the
approximate-implicit method described by Peskin [18]. In general, when boundary points
are coupled to each other through the forces, this approimate-irnplicit method requires the
solution of a nonlinear optimization problem. However, in the examples addressed in this
report, our immersed boundary points act as independert springs. Therefore, step (1) is
performed very quickly.

In step (2), we either create 2 or 3 vortex elements per boundary point. This choice
depends on whether we wish the dipole layer to be normal to the boundary - in which case
we create both a dipole and a monopole layer of vortici y.

Steps (3) and (4) require the computation of velocities of the vortex elements and bound-
ary points respectively using the current positions of vortex elements and their strengths.
We use a second order Runge Kutta method to update the positions of the vortex elements
and the boundary points.

10



COMPUTATIONAL RESULTS

Flow Past a Cylinder

Our first test problem will be flow past a circular cylinder. The cylinder is modelled
by a collection of immersed boundary points which are tethered to fixed spatial positions
by springs of resting length zero. We are deliberately choosing a test problem where the
equilibrium position of the immersed boundary is known and is not time dependent. Flow
past a cylinder has been well-studied since the qualitative features of the flow (such as vortex
shedding) are Reynolds number dependent. For a detailed discussion of the simulation of
flow past a cylinder using vortex methods, the reader is referred to Cheer [5]. Our simulations
differ in that the cylinder is represented as a singular external force field in the fluid, and
not a computational boundary.

We found that introducing the dipole layer normal to the cylinder made the calculations
more stable. Therefore, at each time step, we create 3 vortex elements per boundary point.
This layer is shown in Figure 1 for an immersed cylinder made up of 40 immersed boundary
points. The cylinder has a diameter d = .1 cm and is placed in a uniform flow U = 2 cm/s.
We used a time step At = .00025 s, and spacing between boundary points of As = .lr/40 cm.
The numerical parameter which represents the distance of the dipole vortex elements from
the immersed boundary is h = .8As. The viscosity was chosen to be 10'. The smoothing
parameter or = .75As. The Reynolds number based upon the uniform flow velocity and
diameter of the cylinder is therefore on the order of 10 7 . The tethering stiffness constant
used was 10'.

Figures 2 and 3 show velocity fields of the flow about the cylinder at time t = .0125 s.
We show 2 space scales to emphasize the fact that because this is a grid-free method, the

velocities may be calculated from the vortex element configuration at any spatial points by
using equation (24). We are, therefore, able to resolve the boundary layer with a much finer
degree of accuracy than if we were working on a fixed grid. Smoothing does take place,
however, both in the representation of the vortex blob functions (parameter a) and in the
finiteness of the dipole layer (parameter h).

Stagnation points at the upstream and downstream centerline of the cylinder can be seen
in Figures 2 and 3. The magnitude of the velocity vectors at the top and bottom of the
cylinder are larger than the free stream velocity, as is to be expected. The flowfield within
the cylinder is nearly zero, indicating the tethering forces are doing their job. However,
these flowfields do not yet show vortex formation and shedding at the cylinder. We have not
run this code long enough to exhibit these features, which become evident at such a high
Reynolds number. In order for the approximate-implicit force calculations to remain stable,
we need to use a relatively small time step. This causes the creation of an extremely large
number of vortex elements in a small real-time simulation.

11
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Flow Past a Flat Plate

In this example, we will simulate incompressible, inviscid flow about a flat plate which is
oriented normal to the free flow. There are 2 possible inviscid flows which are solutions. One
is a continuous potential flow which is steady and symmetric with respect to the plate. How-
ever, the velocities near the ends of the plate are infinite. Another solution is an unsteady,
discontinuous potential flow, which sheds vorticity from the plate [23J. Here, the velocities
at the ends of the plate are finite. This solution, when compared with experiments, is more
realistic and can be thought of as the vanishing viscosity limit [16].

The flat plate is represented by an elastic boundary which is made up of 40 immersed
boundary points. The plate lies on the line x = 1 and goes from y = 1 to y = 3. The plate is
tethered to space with springs of resting length zero and stiffness constants 107. A uniform
background flow of U = .5 is imposed. The numerical parameters used are At = .001,
As = .05, h = .4As, and a = .75As.

To modify the algorithm to model invisid flow, we discard the random walk which ap-
proximates diffusion. Moreover, we only force the normal component of velocity of the plate
to coincide with that of the fluid. (Our immersed boundary point can therefore only move
in the x- direction.) In inviscid flow, tangential slip is allowed.

In these simulations, we are only going to create a single dipole layer of vorticity at the
plate (i.e., 2 vortex elements per boundary point are created at each time step). This dipole
layer is actually tangent to the plate.

Figure 4 shows velocity fields about the plate at t = .04, t = .25, t = .5, and t = .75. The
first flow field appears to be symmetric about the plate; a wake has not yet had a chance
to form. The successive flow fields show the formation of 2 counter-rotating vortices at the
ends of the plate. These vortices are getting bigger as time goes on. Our numerical scheme
has picked out the unsteady, inviscid solution. We believe this happens because our velocity
field, due to the smoothing parameter o,, is not allowed to be infinite anywhere. Moreover,
the finiteness of our dipole layer h adds some smearing which is manifested as numerical
viscosity.

The dipole layer of vortex elements is initialized to lie tangentially along the plate, except
for the 2 elements which are placed a distance of h from the top and the bottom. The vortex
elements on the plate move approximately with the same velocities as the tethered boundary
points, and thus, approximately remain on the plate. However, vortex elements are shed from
the top and bottom. Figure 5 shows the location of vortex elements at time t = .04 and at
I - .25. By t = .2" a total of 20,000 vortex elements have been created. Figure 6 shows a
contour plot of vorticity at t -= .25. These figures qualitatively compare to the vortex sheet
roll up described in Krasny [161.
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CONCLUSIONS AND FUTURE WORK

Finite difference schemes do not perform well in simulations of high Reynolds number
flow because a restrictive number of grid points must be used to resolve boundary layers. We
have presented a grid-free numerical method which may be used to calculate flows around
an immersed elastic boundary. We have presented numerical results in 2 simple cases, where
the boundary motion is specified and is not time dependent. Our initial results show that
the method gives the correct qualitative features of the desired flow.

The major drawback of this algorithm is the growth of the number of vortex elements at
each time step. The computation of the vortex-vortex interactions becomes very expensive.
Presently, we are performing the straightforward O(m') operations, where m,, is the total
number of vortex elements present at time step n. There are, however, techniques which
can be used to speed up this calculation: Anderson's method of local corrections [1], or the
multipole method of Greengard and Rokhlin [13]. We are planning to incorporate one of
these techniques in our code.

As the algorithm stands, mn, is always increasing by 2 or 3 times the number of boundary
points each time step. In an exterior problem, like flow past a flat plate, we can throw away
vortex elements when they move a certain distance from the immersed boundary. However,
in interior calculations, like blood flow in the heart, some vortex elements are trapped inside
the immersed boundary. We need to investigate the systematic merging of nearby vortex
elements in order to make large time simulations feasible.

We need to establish the dependence of this following numerical method on the numerical
parameters:

1) The equilibrium distance between boundary points As.

2) The small parameter h which determines the distance of the dipole layer from the
boundary.

3) The parameter o- used in smoothing the velocity field near the center of the vortex
blobs.

We would like to show convergence of this numerical scheme as these parameters are
refined. We should also include another parameter, Kmoa which would be the maximum
strength any one vortex element can carry. If a strength n, > n,a is calculated, that vortex
element ought to be split up into other elements of smaller strengths, which add up to ,.

This has shown to be very important in the convergence of standard vortex methods [24].

The numerical examples presented here were chosen for their simplicity. These immersed
boundaries do not undergo time dependent motions, and their equilibrium position in space
has been specified by specifying tether points. Moreover, each boundary point is uncou-
pled from its neighbors in the force density calculations. Once a better understanding of
the numerical method is achieved on these test problems, we can use it, with vcry minor

modifications, to model time dependent problems in biofluiddynamics.
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